Road and Roadside Feature Extraction Using Imagery and Lidar Data for Transportation Operation

نویسندگان

  • S. Ural
  • J. Shan
  • M. A. Romero
  • A. Tarko
چکیده

Transportation agencies require up-to-date, reliable, and feasibly acquired information on road geometry and features within proximity to the roads as input for evaluating and prioritizing new or improvement road projects. The information needed for a robust evaluation of road projects includes road centerline, width, and extent together with the average grade, cross-sections, and obstructions near the travelled way. Remote sensing is equipped with a large collection of data and well-established tools for acquiring the information and extracting aforementioned various road features at various levels and scopes. Even with many remote sensing data and methods available for road extraction, transportation operation requires more than the centerlines. Acquiring information that is spatially coherent at the operational level for the entire road system is challenging and needs multiple data sources to be integrated. In the presented study, we established a framework that used data from multiple sources, including one-foot resolution color infrared orthophotos, airborne LiDAR point clouds, and existing spatially non-accurate ancillary road networks. We were able to extract 90.25% of a total of 23.6 miles of road networks together with estimated road width, average grade along the road, and cross sections at specified intervals. Also, we have extracted buildings and vegetation within a predetermined proximity to the extracted road extent. 90.6% of 107 existing buildings were correctly identified with 31% false detection rate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Method for Road Detection Using High Resolution Satellite Images and Lidar Data Based on One Class Svm and Lbp Features

Now a days, fast extraction of road network is a challenging task especially in urban areas where roads are covered by height objects like trees, buildings, parking lots, vehicles etc. Imagery, especially high resolution image is main source for road detection as it contains rich texture and spectral information. This paper proposes a method based on merging of features of high resolution satel...

متن کامل

Automatic Compilation of 3d Road Features Using Lidar and Multi-spectral Source Data

While many commercial cartographic feature extraction systems process panchromatic and color imagery, few systems fully integrate airborne LIDAR data as a component of the feature extraction process. Most computational techniques seek elevation discontinuities at object boundaries or use the physics of the LIDAR signal to detect regions indicative of sharp edges and/or foliage. Automated road e...

متن کامل

A Study of Various Feature Extraction Methods on a Motor Imagery Based Brain Computer Interface System

Introduction: Brain Computer Interface (BCI) systems based on Movement Imagination (MI) are widely used in recent decades. Separate feature extraction methods are employed in the MI data sets and classified in Virtual Reality (VR) environments for real-time applications. Methods: This study applied wide variety of features on the recorded data using Linear Discriminant Analysis (LDA) classifie...

متن کامل

Automatic Road Extraction from Dense Urban Area by Integrated Processing of High Resolution Imagery and Lidar Data

Automated and reliable 3D city model acquisition is an increasing demand. Automatic road extraction from dense urban areas is a challenging issue due to the high complex image scene. From imagery, the obstacles of the extraction stem mainly from the difficulty of finding clues of the roads and complexity of the contextual environments. One of the promising methods to deal with this is to use da...

متن کامل

Automatic Road Extraction from Airborne LiDAR : A Review

LiDAR is the powerful Remote Sensing Technology for the acquisition of 3D information from terrain surface. This paper surveys the state of the art on automated road feature extraction from airborne Light Detection and Ranging (LiDAR) data. It presents a bibliography of nearly 50 references related to this topic. This includes work related to various main approaches used for extracting road fro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015